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ABSTRACT

Background: To investigate the role of ultraprotective mechanical ventilation (UP-MV) and extracorporeal carbon dioxide
removal with and without spontaneous breathing (SB) to improve respiratory function and lung protection in experimental
severe acute respiratory distress syndrome.

Methods: Severe acute respiratory distress syndrome was induced by saline lung lavage and mechanical ventilation (MV) with
higher tidal volume (V) in 28 anesthetized pigs (32.8 to 52.5kg). Animals (n = 7 per group) were randomly assigned to 6h
of MV (airway pressure release ventilation) with: (1) conventional P-MV with V.. 6 ml/kg (P-MV ___); (2) UP-MV with V..

~3ml/kg (UP-MV__); (3) UP-MV with V.. *3 ml/kg and SB (UP—MVSPOM); and (4) UP-MV with V.. =3 ml/kg and pressure
supported SB (UP-MV,,¢). In UP-MV groups, extracorporeal carbon dioxide removal was used.

Results: The authors found that: (1) UP-MV__  reduced diffuse alveolar damage score in dorsal lung zones
(median[interquartile]) (12.0 [7.0 to 16.8] vs. 22.5 [13.8 to 40.8]), but worsened oxygenation and intrapulmonary shunt,
compared to P-MV__ 5 (2) UP-MV__ and UP-MV,,¢ improved oxygenation and intrapulmonary shunt, and redistributed
ventilation towards dorsal areas, as compared to UP-MV___ ; (3) compared to P-MV__, UP-MV__and UP-MV_ ., UP-
MV, yielded higher levels of tumor necrosis factor-o (6.9 [6.5 to 10.1] vs. 2.8 [2.2 to 3.0], 3.6 [3.0 to 4.7] and 4.0 [2.8 to
4.4] pg/mg, respectively) and interleukin-8 (216.8 [113.5 to 343.5] vs. 59.8 [45.3 to 66.7], 37.6 [18.8 to 52.0], and 59.5
[36.1 to 79.7] pg/mg, respectively) in dorsal lung zones.

Conclusions: In this model of severe acute respiratory distress syndrome, MV with V.. 3 ml/kg and extracorporeal carbon
dioxide removal without SB slightly reduced lung histologic damage, but not inflammation, as compared to MV with V.. = 4
to 6 ml/kg. During UP-MYV, pressure supported SB increased lung inflammation. (ANEsTHEsIOLOGY 2015; 122:631-46)

ROTECTIVE mechanical ventilation (P-MV) with . .
low tidal volume (V, 4 to 8ml/kg of predicted body What We Already Know about This Topic

weight) and distending pressures (inspiratory plateau pressure) e Ultraprotective tidal volumes with extracorporeal carbon dioxide
removal have been proposed to minimize ventilator-associated
. . . . . . lung injury, as compared to conventional protective ventilation
(o] lung tssue, dCCerSlIlg 1ung inflammation, and improving alone, but the impact of spontaneous breathing is not well defined
survival in patients with the acute respiratory distress syndrome
(ARDS)."* However, even low V.. cannot avoid increased lung
stress/strain, leading to ventilator-induced lung injury (VILI).? ¢ In a model of severe acute respiratory distress syndrome in
pigs, mechanical ventilation with 3ml/kg tidal volume and
. ; - A ) 4 extracorporeal carbon dioxide removal without spontaneous
with V.. of 6 ml/kg, tidal hyperinflation could still be detected, breathing slightly reduced lung histologic damage
Spontaneous breathing during ultraprotective ventilation im-
proved gas exchange and distribution of ventilation, but pres-
sure support increased lung inflammation

lesser than or equal to 30cm H,O reduces mechanical stress

What This Article Tells Us That Is New

In fact, in a group of ARDS patients mechanically ventilated

suggesting that P-MV in those patients would require even
decreased V.. However, carbon dioxide retention and respira-
tory acidosis may pose a limit to further reduction of V..
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Extracorporeal carbon dioxide removal (ECCO,-R)
allows reduction of V.. beyond the threshold of 4ml/kg

(ultralow V), while keeping Paco, in a clinically accept-

able range.> Nevertheless, reduced zlveolar ventilation with
ultralow V.. may favor alveolar collapse and further dete-
rioration of oxygenation. Furthermore, most commercially
available devices for ECCO,-R provide adequate carbon
dioxide elimination, but not oxygenation.”

To our knowledge, the role of ultra-P-MV (UP-MV)
combined with ECCO,-R in severe ARDS has not been
definitely demonstrated. Furthermore, the effects of spon-
taneous breathing activity to counteract lung collapse and
improve oxygenation during ultralow V.. ventilation have
not been investigated.

Spontaneous breathing activity during mechanical venti-
lation may reverse alveolar collapse, redistribute ventilation
and perfusion, and decrease cyclic collapse and reopening of
alveoli, possibly leading to less VILL.® On the other hand,
spontaneous breathing activity may also result in unpredict-
able inspiratory effort, increasing stress/strain, and worsen-
ing VILL.?

In this study, we evaluated the effects of UP-MV with
and without spontaneous breathing activity on gas exchange,
lung mechanics, hemodynamics, regional distribution of
ventilation and perfusion, as well as on proinflammatory
response, and histological damage in lungs, in a double-hit
model of severe early ARDS in pigs. We hypothesized that
during UP-MV combined with ECCO-R: (1) lung inflam-
mation and damage are reduced compared to P-MV; (2)
spontaneous breathing activity, whether supported by pres-
sure or not, enhances oxygenation and further improves lung
protection.

Materials and Methods

After approval by the governmental animal care commit-
tee (Landesdirektion Dresden, Dresden, Saxony, Germany),
28 pigs with mean body weight of 41.8kg (32.8 to 52.5kg,
German landrace) were used for this study.

Anesthesia and Mechanical Ventilation

Animals were premedicated intramuscularly with 10 mg/
kg ketamine (Ketamin-ratiopharm; Ratiopharm, Ulm,
Germany) and 1 mg/kg midazolam (Midazolam; Ratio-
pharm), intubated with a cuffed 8.0-mm internal diame-
ter endotracheal tube and mechanically ventilated (EVITA
XL; Driger Medical, Liibeck, Germany). Anesthesia was
maintained by means of continuous intravenous infusion
of midazolam (1 to 2mg kg™! h™!) and ketamine (10 to
20mg kg™! h™!). Muscle paralysis was achieved by con-
tinuous administration of atracurium (1 to 2mg kg™ h™!).
Animals were kept in the supine position during the whole
experiment. Volume status was maintained with a con-
tinuous infusion of Ringer’s acetate (RA—Ringer-Acetat-
Losung Bernburg; Serumwerk Bernburg AG, Bernburg,
Germany) at 10 ml kg™' h™".
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Until induction of ARDS, animals were ventilated
in volume-controlled mode with the following settings:
fraction of inspired oxygen (Fio,) = 1.0; V.. = 10 ml/kg;
positive end-expiratory pressure (PEEP) = 5cm H,O;
inspiratory to expiratory time ratio (I:E) = 1:1; the respira-
tory rate (RR) was adjusted to achieve a Paco, in the range

of 35 to 45 mmHg,.

Instrumentation and Measurement Devices

External jugular vein and internal carotid artery were can-
nulated with 8.5 French sheaths. The arterial line was used
for continuous blood pressure measurements and blood
sampling. A pulmonary artery catheter (Opticath; Abbott,
Abbott Park, Chicago, IL) was advanced through the venous
sheath into the pulmonary artery for continuous measure-
ment of pulmonary arterial blood pressure, mixed venous
blood sampling, and cardiac output measurements. The air-
flow signal was acquired from the internal flow sensor of the
ventilator through a serial interface. The airway pressure (P, )
was measured at the proximal end of the endotracheal tube
with a T-piece connected to a differential pressure transducer
(163PC01D48-PCB; Sensortechnics GmbH, Puchheim,
Germany). Esophageal pressure (P_) was measured with a
balloon catheter (Erich Jaeger, Hochberg, Germany) that
was advanced into the mid chest and connected to another
differential pressure transducer (163PC01D48-PCB, Sen-
sortechnics GmbH). For acquisition of airway flow, as well
as airway and esophageal pressures, a LabVIEW-based data
acquisition system (National Instruments, Austin, TX) was
used, as described elsewhere.!?

Blood Gas and Hemodynamics

Arterial and mixed venous blood samples were analyzed
using a standard blood gas analyzer (ABL 505; Radiometer,
Copenhagen, Denmark). Oxygen saturation and hemoglo-
bin concentration were measured using an OSM 3 Hemox-
imeter (Radiometer) calibrated for swine blood. Heart rate,
mean arterial blood pressure, central venous pressure, and
mean pulmonary arterial pressures were measured using a
standard monitor (IntelliVue Patient Monitor MP 50 Phil-
ips, Boblingen, Germany). Cardiac output was measured via
the pulmonary artery catheter as the average of three repeated
injections of 10 ml iced saline into the proximal lumen.

Respiratory Variables

Respiratory signals were acquired at a sample frequency
of 200 Hz, using an A/D-card (NI USB-6210; National
Instruments) connected to a laptop. Extraction of respira-
tory variables was performed offline from 45 min recordings
of airflow, P_,
pressure (P)) tracings were computed as P minus P,

and P_ at each time point. Transpulmonary

whereby peak and mean values were calculated cycle-by-

cycle (P and P, . respectively) in all cycles (spontane-

L,mean
ous, mixed, and mandatory). During controlled mechanical

ventilation, the resistance and elastance of the respiratory
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system (E_ and R, respectively) were calculated using the
equation of motion, as shown in equation E1:

P, (6)=R, - Ve)+E, V(e)+h (E1)
with airway pressure P, , airway flow V, volume V; time ,
and the total airway pressure at end-expiration P .

Distribution of Ventilation

The distribution of ventilation was assessed using elec-
tric impedance tomography (EIT—EIT Evaluation Kit 2;
Driger Medical) as described elsewhere.!! Shortly, a flex-
ible belt equipped with 16 electrodes was mounted at the
xiphoid level around the thorax to perform EIT. The output
images were recorded at 20 frames/s, during 5 min. Imped-
ance distribution was reconstructed offline using dedicated
EIT software (Driger EIT Data Review; Driger Medical
AG, Germany). Each frame consisted of 32 x 32 image val-
ues I (x, y), which were analyzed with a custom-made soft-
ware as described elsewhere.!?

Distribution of Perfusion

Regional pulmonary blood flow was marked with intrave-
nously administered fluorescent, color-labeled microspheres
as described in detail elsewhere.!* A different color was
administered at Baseline 2 and Time 6 to mark regional per-
fusion. Postmortem processing of lungs was performed as
previously described.!>!4 Briefly, the left lung was flushed, air
dried, coated with one-component polyurethane foam (BT
Befestigungstechnik, Ingelfingen, Germany), suspended ver-
tically in a square box, and embedded in rapidly setting ure-
thane foam (polyol and isocyanate; Elastogran, Lemférde,
Germany). The foam block was cut into cubes and each cube
was weighed and assigned a three-dimensional coordinate.
The fluorescent dye was retrieved and read in a luminescence
spectrophotometer (LS-50B; Perkin-Elmer, Beaconsfield,
United Kingdom). The measured intensity of fluorescence in
each probe was normalized according its own weight using

Qrel,i = [xz' ixi :|/‘Vz

Where Q,,, is the weight-normalized relative pulmonary
blood flow of the probe 7 x; is the obtained fluorescence probe
i, W, is the weight of the probe 7, and 7 is the total number of
probes. The distribution of pulmonary blood flow along the
dorsal-ventral and caudal-cranial axes at each experimental

equation E2:

(E2)

rel,i

condition was assessed by means of linear regression. Changes
in the angular coefficients were used to characterize redistri-
bution of perfusion along the respective axis.

Extracorporeal Carbon Dioxide Removal
In groups with ultraprotective ventilation, a 15 French and

a 17 French catheter (Novalung; Heilbronn, Germany)

Anesthesiology 2015; 122:631-46

Downloaded From: http://anesthesiology.pubs.asahg.or g/ on 06/23/2016

633

were placed in the femoral artery and vein, respectively,
and connected to an interventional lung assist device (ILA®
Novalung) for ECCO,-R. A mixture of oxygen and air
was used as sweep gas, whereby the gas flow was titrated to
Paco, = 50 to 70 mmHg. The oxygen fraction of the sweep
gas was set to keep the partial pressure of oxygen in the blood
flowing across the ILA® approximately constant, minimiz-
ing the membrane oxygenation effect.

Double-hit Lung Injury

Experimental ARDS was induced with a double-hit consist-
ing of saline lung lavage and mechanical ventilation with
high V.. Saline lung lavage (first hit) was performed until
Pao,/Fio, was less than 200 mmHg for greater than or equal
to 30 min. Following that, VILI (second hit) was performed
with the following settings: driving pressure of 60cm H,O,
PEEP = 0, RR = 10 per min, for 5min. Lung injury was
considered stable, when Pao, did not increase within 15 min.

Protocol of Measurements

The study was a prospective, randomized multiple arms
study, evaluating the effects of four different ventilatory
approaches, namely: (1) protective controlled MV according
to the ARDS network (P-MV__); (2) controlled UP-MV
(UP-MV__); (3) UP-MV with mandatory cycles and

superposéglt{massisted spontaneous breathing (UP’MVspom);
and (4) continuous positive airway pressure combined with
pressure supported (PS) spontaneous breathing (UP-MV ).

Figure 1 shows the time course of interventions. After
instrumentation, baseline measurements were obtained
(baseline 1), and experimental ARDS was induced. Follow-
ing that, the ventilator settings of baseline 1 were resumed, a
stabilization period of 15 min was maintained and measure-
ments were performed (injury). P-MV was initiated in the
airway pressure release ventilation mode with the following
settings: inspiratory airway plateau pressure (Paw)plat) targeted
at V., = 6ml/kg, PEEP = 16cm H,O, LE = 1:1, and RR
<35 per min to pHa >7.30. V.. was reduced up to 4ml/
wplat <30cm H,O. If RR was 35 per min
and severe respiratory acidosis with pHa between 7.15 and
7.20 developed, Vi and P\ ~were not further reduced.
A stabilization period of 30 min was allowed and measure-
ments taken (baseline 2 [BL2]). After BL2, a continuous
infusion of heparin at a rate of 25 IU kg™' h™! including a
loading dose of 80 IU/kg was started. Animals were then
randomly assigned to one of the four modes of mechani-
cal ventilation using sealed envelopes. In UP-MV_ ., UP-
MV . and UP-MV, groups, animals were instrumented
and connected to the ILA® device. In P-MV___, a period
of sham ventilation of 60 min was maintained to match the

time needed for instrumentation and placement of the ILA®

kg targeting at P,

device in the other groups.

Ventilator settings in UP-MV__, UP-MV_ . and UP-
MV s groups were as follows: airway pressure release venti-
lation mode with driving pressure titrated to V.. =3 ml/kg,

ont
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Induction of anesthesia Preparation ILA

and preparation or sham™ .
Induction of Resun'_ung of spontaneous
ARDS breathing or sham
Premedication Start of protective Start of therapy
ventilation/
randomization | | | | | |
@ >
1.5h 2h 1h 0.25h 1h 1h 1h 1h 1h 1h
Baseline 1 Injury Baseline 2 Therapy 6h End
N p— S
vcv PCV
V7 10 mUkg Phigh - V; 6 mLIkg  Mechanical ventilation according to random
PEEP § cmH;0 PEEP 16 cmH,0 assignment to one of the following modes:
Fi10,1.0 Fi10,1.0

P-MV o - PCV, Vi= 4-6 mUKkg for limiting Py,,, PEEP=16 cmH,0,
I.E=1:1, RR for pHa > 7.30% (but < 35/min); muscle paralysis

UP-MV ontr - APRV, V1=3 mUkg, PEEP=16 cmH,0, RR=15/min, |.E
for Pay, mean COMparable to P-MV ¢ony; ECCO2-R; muscle paralysis

UP-MVpont APRV, Vy=3 mUkg, PEEP=16 cmH,0, RR=15/min, |.E for
Pav,mean COMparable to P-MV oqy; ECCO2-R; no muscle paralysis

UP-MVps : CPAP+PS, V=3 mUkg, PEEP adjusted for Py, mean

comparable with P-MV 5 ECCO2-R; no muscle paralysis
Fig. 1. Time course of interventions. *Period of sham ventilation in P-MV__ . as well as P-MV___. and UP-MV__ . animals, respec-
tively. #If RR was 35 per min and severe respiratory acidosis with pHa between 7.15 and 7.20 developed, P, was allowed to
be increased above 30cm H,0 to ensure sufficient alveolar ventilation. §In case inspiratory efforts disappeared, PEEP level was
reduced until spontaneous breathing reoccurred. APRV = airway pressure release ventilation; CPAP+PS = continuous positive
airway pressure + pressure support; ECCO,-R = extracorporeal carbon dioxide removal; Fio, = inspiratory fraction of oxygen;
I:E = ratio of inspiration to expiration; ILA = interventional lung assist; P, ... = mean airway pressure; PCV = pressure controlled
ventilation; PEEP = positive end-expiratory pressure; pHa = arterial pH; P-MV__ .= controlled mechanical ventilation according
to the Acute Respiratory Distress Syndrome network; RR = respiratory rate; UP-MV__ . = controlled ultraprotective mechani-
cal ventilation; UP-MV,4 = continuous positive airway pressure combined with pressure supported spontaneous breathing;

UP-MV,

spon

VCV = volume controlled ventilation; V; = tidal volume.

PEEP = 16cm H,O, LE ratio titrated to a mean airway
pressure (P ) equivalentto P-MV_ . and RR =15 per
min. RR was reduced in order to restraint the mechani-
cal stress inflicted by cycling of the ventilator, that is, the
stress rate, which has been shown to influence VILI.'> In
UP-MV_ . and UP-MV,, muscle paralysis was stopped
and spontaneous breathing resumed. In P-MV__— and
UP-MV_ ., another period of sham ventilation of 30 min
was allowed to match the time of resuming spontaneous
breathing in the UP—MVSPOnt and UP-MV, groups. In
UP—MVSPOM, animals were able to breathe spontaneously

throughout the whole respiratory cycle. In UP-MV,,
as soon as signs of spontancous breathing efforts were
observed in P tracings, the ventilator was switched to
continuous positive airway pressure with PS with follow-
ing settings: continuous positive airway pressure equivalent
o P . during P-MV_ . PS adjusted to V.. =3ml/kg.
Fio, was maintained at 1.0 in all groups throughout the
whole experiment. During a period of 6h, measurements
of gas exchange, hemodynamics, respiratory variables, and
distribution of ventilation were performed once every hour

(Times 1 to 6).
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= ultraprotective mechanical ventilation with mandatory cycles and superposed unassisted spontaneous breathing;

Postmortem Analyses

At the end of the observation period, heparin was admin-
istered (1000 IU/kg iv) (Ratiopharm) and animals were
killed by iv injection of 2 g thiopental (Inresa, Arzneimittel
GmbH, Freiburg, Germany) and 50ml KCl 1M (Serum-
werk; Bernburg, Germany). Lungs were removed under con-
tinuous positive airway pressure equal to the PEEP level for
further processing. Samples from gravitationally dependent
(dorsal) and nondependent (ventral) areas of the right lower
lung lobe were snap-frozen in liquid nitrogen and stored at
-80°C until further analysis.

For analysis of wet/dry ratio, the right middle lobe was
weighted (wet weight) and dried afterward in a microwave as
described elsewhere (dry weight).!¢ The wet-to-dry ratio was
then calculated. Between weighing procedures, broncho-
alveolar lavage fluid of the right middle lobe was obtained
from three repeated instillations (in-and-out) using 50 ml
0.9% saline solution. The material was centrifuged for 15 min
with 200 gauge at 4°C and aliquots of the supernatant were
obtained and kept frozen at -80°C until processing.

For histology, the right upper lobe of the lung was per-
fused with 4% buffered formaldehyde solution although

Guldner et al.
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a continuous positive pressure equivalent to the PEEP
value during the observation period was maintained at the
airway. Lung tissue samples of approximately 8cm? were
taken from ventral and dorsal zones of the right upper
lobe. After perfusion fixation and immersion in 4% buff-
ered formaldehyde solution for 7 days, tissue samples were
embedded in paraffin, cut in slices of 5 pm thickness, and
stained with hematoxylin—ecosin for further analysis. Pho-
tomicrographs at magnifications of x25, x100, and x400
were obtained from four nonoverlapping fields of view per
section using a light microscope. Diffuse alveolar damage
(DAD) was quantified by one of the authors (M.K.), who
is an expert anatomist and was blinded to therapy groups,
using a weighted scoring system, as described elsewhere.!”
Briefly, values from 0 to 5 were used to represent the sever-
ity of seven features of DAD, that is, alveolar edema,
interstitial edema, hemorrhage, inflammatory infiltration,
epithelial destruction, microatelectasis, and overdistension,
with 0 standing for no effect and 5 for maximum severity.
Additionally, the extent of each feature characteristic per
field of view was determined with values of 0 to 5, with
0 standing for no appearance and 5 for complete involve-
ment. The cumulated DAD Score was calculated as the
sum of product of severity and extent of all features, being
situated in the range, 0 to 175.

Total RNA from lung was isolated with TRI reagent
(Sigma—Aldrich GmbH, Deisenhof, Germany) according to
the manufacturer’s protocol, followed by purification with
NucleoSpin RNA I columns (Macherey&Nagel, Diiren,
Germany). The complementary DNA was synthesized with
the Revert AidTM H Minus First Strand Synthesis Kit (MBI
Fermentas, St. Leon Roth, Germany) from 1 pg total RNA
according to instructions of the fabricant. The messenger
RNA expression of the inflammatory mediators and mark-
ers tumor necrosis factor-a., interleukin 6 and 8 (IL-6 and
IL-8), amphiregulin and tenascin-c was quantified using
quantitative real-time polymerase chain reaction (Maxima
SYBR Green qPCR MasterMix:, Fermentas, St. Leon Roth,
Germany) with the iCycler MyiQ2 real-time polymerase
chain reaction system (BioRad; Munich, Germany), with
cyclophilin A and 2-microglobulin as housekeeping genes.
The total protein content in broncho-alveolar lavage fluid
and lung tissue was measured using the BioRad Protein
Assay (BioRad). Protein levels of tumor necrosis factor-a,
IL-6, and IL-8 were measured in lung tissue using com-
mercial ELISA kits (R&D Systems, Wiesbaden, Germany)
according to the manufacturer’s instructions. Myeloperoxi-
dase activity in broncho-alveolar lavage fluid was measured
using a spectrophotometric assay using 50 mM potassium
phosphate (pH 6.0) containing 0.167 mg/ml o-dianisidine
dihydrocholrid and 0.0005% hydrogen peroxide.

Statistical Analyses
The sample size calculation for testing the primary hypoth-

esis (UP-MV combined with ECCO,-R reduces cumulative
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DAD score) was based on effect estimates obtained from pilot
studies. Accordingly, we expected a sample size of seven ani-
mals per group to provide the appropriate power (1-f = 0.8)
to identify significant (a0 = 0.05) differences in DAD Score,
taking a mean difference of 15+ 8, two-tailed test and mul-
tiple comparisons (n = 6) into account (a* = 0.0083, a*
Bonferroni adjusted).

Data are presented as mean + SD, unless stated other-
wise. For functional variables, comparability of groups at
injury and BL2 was tested with one-way ANOVA followed
by Bonferroni post hoc test. P values were adjusted for mul-
tiple comparisons according to Bonferroni. Differences
among and within groups (time effect T1 to T6) were
tested with general linear model statistics using BL2 as
covariate, and adjusted for repeated measurements accord-
ing to the Sidak procedure. To test DAD Score, we used
a linear mixed model for repeated measures (compound
symmetry, repeated covariance type), including field of
view and region (ventral vs. dorsal zones) as repeated,
independent variables, treatment as fixed, independent
variable, as well as their significant interactions, to analyze
differences in the dependent variable DAD score. Adjust-
ments for repeated measures were performed according
to the Tukey Kramer procedure. Residual plots were used
to examine model requirements. Other comparisons were
explorative in nature. Inflammatory mediators and mark-
ers of cell stress were analyzed using Kruskal-Wallis test
followed by pairwise Mann—Whitney U test with post hoc
adjustment according to Bonferroni-Holm procedure.
Statistical analysis was performed using SPSS (v. 17.0,
Chicago, IL) and SAS (v. 9.2, procedure mixed, SAS Insti-
tute, Cary, NC). Statistical significance was accepted at P
value less than 0.05.

Results

Due to technical problems with the EIT device, values were
obtained from 24 animals in total (P-MV 7, UP-MV

contr contr

6, UP—MVSlDon 5, and UP-MV,, 6 animals, respectively).
Further measurements were performed in all 28 animals
(n =7 per group). As depicted in table 1, P-MV___resulted

in average V.. ~5ml/kg, and Paw’Peak =33 cm Hzoér During
UP-MV, V.. and P

swipeak. WETE further reduced to less than
4ml/kg and less than 30 cm H, O, respectively. UP-MV,

spont

was associated with decreased P~ compared to UP-

aw,pea

MV_ . and UP-MV,.. P was comparable between
P-MV_,and UP-MV__, but higher than UP-MV__ and
UP-MV . During UP-MV,i, P, remained fairly con-

stant, indicating that adjustments of PS were not necessary.
P did not differ significantly among groups, but P

L,mean

was decreased during UP-MV_ _as compared to P-MV

spont contr”
During P-MV__, RR and minute ventilation were higher
than in other groups. E_and R were comparable during
P-MV__and UP-MV__ and pressure—time product did

contr contr’

not differ significantly between UP-MV_ and UP-MV,,..

L,peak
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The double hit injury resulted in Pao,/Fio, less than 85
mmHg in all animals. As shown in table 2, UP-MV__
was associated with decreased oxygenation and higher
intrapulmonary shunt levels compared to P-MV__ . The

contr

time needed to resume spontaneous breathing was 34 + 14
and 33+ 11 min in UP-MVSpon and UP-MV g, respectively.
Both UP-MV__~and UP-MV, yielded higher Pao,/
Fio, and lower intrapulmonary shunt than UP-MV

2 contr’
ECCO,-R reduced Paco, and increased pHa, as compared
to P-MV

contr
cardiac output did not differ significantly among groups,

. Heart rate, mean arterial blood pressure, and

whereas mean pulmonary arterial pressures was decreased
during P-MV_ , UP-MV,__, and UP-MV, than UP-
MV _ . Also, central venous pressure was higher during
UP-MYV strategies. The partial pressure of oxygen gradient
across the ILA® membrane was significantly higher than
zero during UP-MV__, but not during UP-MV__ and
UP-MV,,, while the partial pressure of carbon dioxide
gradient was always higher than zero in all ultraprotective
strategies.

Figure 2 shows the distribution of ventilation. UP-MV_
pont and UP-MV ¢ were associated with a redistribution of
ventilation from central to dorsal lung zones compared to
P-MV_ and UP-MV_ . However, we could not detect
a redistribution of perfusion (differences of angular coefhi-
cients of relative pulmonary blood flow between Time 6 and
BL2, median [interquartile range]) neither along the ven-
tral-dorsal axis (P-MV__ : 0.0019 [0.0000, 0.0042]; UP-
MV, : 0.0007 [-0.0007, 0.0020]; UP-MV, _ : ~0.0008
[-0.0022, 0.0006]; UP—MVPS: -0.0009 [-0.0016, 0.0032]),
nor along the cranial-caudal axis (P-MV__ : -0.0010
[0.0016, 0.0001]; UP-MV__: 0.0006 [-0.0001, 0.0014];
UP-MV, : -0.0006 [-0.0015, 0.0019); UP-MV,:
-0.0002 [-0.0010, 0.0010]).

As depicted in figure 3, UP-MV_ _ reduced the DAD
score in dorsal areas, as compared to P-MV__, mainly due
to decreased alveolar edema and inflammatory infiltrates
(table 3). The wet-to-dry ratio did not differ significantly
among groups (P-MV__:8.5[7.8 to 8.9]; UP-MV_ 7.8
[7.0 to 9.7]; UP-MVSPOH[: 7.5 [7.4 to 7.7]; UP-MV,¢: 7.7
[7.1 to 8.0]).

UP-MV ¢ was associated with higher levels of tumor
necrosis factor-o. and IL-8 both in ventral and dorsal
lung regions compared to other groups (fig. 4). No dif-
ferences were found in markers of inflammation in lung
tissue among P-MV_ ., UP-MV__ | and UP-MV_ .
Gene expression of inflammatory mediators and markers
of cell stress in lung tissue (table 4), as well as total protein,
cytokine, and myeloperoxidase levels in broncho-alveolar
lavage fluid (table 5), were comparable among different

groups.

Discussion

In a model of severe ARDS in pigs, we found that: (1) UP-
MV _ reduced DAD score mainly in dorsal lung zones,

cont
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Fig. 2. Distribution of ventilation. Values represent percentage
of total minute ventilation and are shown as mean and SD.
Due to technical problems with the EIT device, values were
obtained from 24 animals in total (P-MV__ . 7, UP-MV .6,
UP—MVSpon 5, and UP-MV, 6 animals, respectively). Statis-
tical significance was accepted at P value less than 0.05.
Comparability of groups at injury, BL2 was tested with one-
way ANOVA followed by Bonferroni post hoc test. Differ-
ences among groups were tested with general linear model
statistics and adjusted for repeated measurements accord-
ing to the Sidak procedure; * versus P-MV___.; # versus
UP-MV_ .- P values in the figure represent group effect.
Post hoc analysis, central: P-MV, = versus UP-MV

contr contr
P = 0.945, versus UP-MV P = 0.045, versus UP-MV

spon

P = 0.013; UP-MV_ . = versus UP-MVSpon P = 0.161,
versus UP-MV;¢ P = 0.057 and UP-MV = versus UP-MVq
P = 0.999; dorsal: P-MV__ . = versus UP-MV___ P = 1.000,

contr contr

P = 0.007, versus UP-MV,4 P = 0.004;
cony = versus UP-MV_ P = 0.003, versus UP-MV4
P = 0.004 and UP-MV_, = versus UP-MV,, P = 1.000.
BL1 = baseline 1; BL2 = baseline 2; central = central lung
regions; dorsal = dorsal lung regions; EIT = electrical imped-
ance tomography; IN = injury; P-MV__ = controlled mechan-
ical ventilation according to the Acute Respiratory Distress
Syndrome network; UP-MV__ .. = controlled ultraprotective
mechanical ventilation; UP-MV,4 = continuous positive air-
way pressure combined with pressure supported spontane-
ous breathing; UP-MVspon = ultraprotective mechanical ven-
tilation with mandatory cycles and superposed unassisted
spontaneous breathing; ventral = ventral lung regions.

versus UP-MV_
UP-MV

but worsened oxygenation and intrapulmonary shunt,
compared to P-MV__ ;5 (2) UP—MVSpont and UP-MV,,
improved oxygenation and intrapulmonary shunt, and
redistributed ventilation towards dorsal areas, as compared
to UP-MV__; (3) UP-MV/, resulted in more inflamma-
tion in lung tissue than P-MV_ ., UP-MV_ . and UP-
MV_ , mainly in dorsal zones.

spont’

Guldner et al.
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Fig. 3. Cumulative diffuse alveolar damage (DAD) score. Val-
ues are shown as median and interquartile range with whis-
kers indicating minimum and maximum and were obtained
from 28 animals in total (n = 7 per group). There were no
missing values. Statistical significance was accepted at P <
0.05. Differences among groups were tested with mixed linear
model statistics, and Tukey Kramer procedure used for post
hoc test. Statistical significance of pairwise comparisons is
indicated by *P < 0.05 against P-MV P values in the figure

contr*

represent group effect. Post hoc analysis: P-MV__ = versus
UP-MV__...P=0.016, versus UP-MVSpon P =0.964, versus UP-
MV, P = 0.763; UP-MV_ . = versus UP-MV_ P = 0.058,

versus UP-MV ¢ P = 0.177 and UP-MVSPOH = versus UP-MV ¢
P =0.959. Dorsal = dorsal lung regions; P-MV___. = controlled
mechanical ventilation according to the Acute Respiratory
Distress Syndrome network; UP-MV__ .= controlled ultra-
protective mechanical ventilation; UP-MV,4 = continuous
positive airway pressure combined with pressure supported
spontaneous breathing; UP-MVSpon = ultraprotective mechan-
ical ventilation with mandatory cycles and superposed unas-
sisted spontaneous breathing; ventral = ventral lung regions.

To our knowledge, this is the first study investigating
the impact of different ventilatory strategies, including
spontaneous breathing, during UP-MV and ECCO,-R
on lung morphofunction and inflammatory markers in a
model of severe ARDS. We used a double-hit consisting of
saline lung lavage and VILI, which reproduces most his-
tological features seen in human ARDS.'®!? The levels of
hypoxemia were compatible with severe ARDS according
to the Berlin definition.? We chose pressure-controlled
and pressure support ventilation because these modes
share similar inspiratory flow patterns. Furthermore, in
presence of spontaneous breathing, volume assist-control
contr’ set-
tings of V., RR, and I:E were based on recommenda-
tions of the ARDS network. However, in some animals,
inspiratory plateau pressure could not be set lesser than

ventilation may yield breath stacking. In P-MV

or equal to 30cm H,O due to severe respiratory acido-
sis, but P, was less than 20cm H,O during P-MV |
a level that appeared to be safe during the ventilation of
pigs without lung injury in a study by Protti et 4/.,*! when
sufficient PEEP was used, and is far less than the safety

Anesthesiology 2015; 122:631-46

Downloaded From: http://anesthesiology.pubs.asahg.or g/ on 06/23/2016

641

limit of 27cm H,O proposed in humans elsewhere.**
The PEEP level was chosen in agreement with the higher
PEEP strategy.” In fact, a recent meta-analysis showed
that higher PEEP levels improve survival in patients with
severe ARDS.* The Fio, was kept at 1.0 to allow direct
comparison with UP-MYV strategies, where accumulation
of nitrogen may impair oxygenation.24 In order to mini-
mize differences in P ., AMONg groups, we increased the
I:E ratio in UP—M\/'CM,[r and UP—MVSPOM, and the PEEP in
UP-MV,,. Indeed, P ean
hemodynamics and lung injury,® affecting the compara-

may impact on gas exchange,

bility among different MV strategies.
The deterioration of oxygenation and intrapulmonary
shunt during UP-MV___ | compared to P-MV__|
contr contr
be ascribed to alveolar derecruitment due to decreased
Viand P . despite comparable P .26 Spontane-

aw,peal aw,mean

ous breathing activity, whether PS or not, improved oxy-

may

genation and intrapulmonary shunt, reducing also the
mean pulmonary arterial pressure. Previous studies have
shown that these effects could be explained by redistribu-
tion of perfusion towards better aerated, nondependent
lung regions*’?® or recruitment of collapsed, dependent
zones.” In the current study, we found that UP-MV
and UP-MV, redistributed ventilation towards dorsal
areas, although not affecting regional perfusion. These
observations suggest that spontaneous breathing activity
induced recruitment in those areas due to higher regional

P, because PL’Peak and P were comparable among

UP-MV strategies. The deé‘rr:::;e in mean pulmonary arte-
rial pressures during P-MV___ , as well as UP-MV_ . and
UP-MV,, compared to UP-MV__ may be explained
by the improved oxygenation. The higher central venous
pressure during UP-MV strategies could be attributed to
the arterial-venous pressure gradient across the artificial
membrane, which may have increased the pressure in the
inferior cava vein.

Improved oxygenation in UP-MV_ and UP-MV,¢
compared to UP-MV__
uptake in the extracorporeal gas exchange device. In fact,
we found that the partial pressure of oxygen gradient across
the artificial membrane was higher in UP-MV_than UP-
MV and UP-MV,,
of spontaneous breathing activity during UP-MV on oxy-
genation were even underestimated.

cannot be attributed to oxygen

suggesting that the beneficial effects

The decrease of histological damage in dorsal areas
during UP-MV_ _, as compared to P-MV__, can be
contr contr’
explained by two mechanisms: reduced stress/strain, as
indicated by decreased P and P , as well as V.
aw,peak L,peak T
and decreased stress rates, as suggested Ey decreased respi-
ratory rate.’® The beneficial effects of UP-MV on histo-
logical damage could not be detected when spontaneous
breathing activity was resumed, despite comparable values
of PL,peak and PL,mean
might have partially counteracted lung protection. In fact,

UP-MV,, but not UP-MV

PS’ spon

. This suggests that inspiratory effort
» Was associated with an
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Table 3. Diffuse Alveolar Damage Score

Ventral Group Effect, Post hoc Dorsal Group Effect, Post Hoc Test,
Feature Group Region P Value Test Region P Value P Value
Alveolar P-MV_, ... 1[0-2] 0.199 2 [0-11] 0.004
edema UP-MV_ .. 0[0-1] 0 [0-2] 0.003*
UP—MVspon 0 [0-1] 2 [1-6] 0.116%, 0.573t
UP-MV,¢ 0 [0-1] 1[1-4] 0.020%, 0.9387,
0.894%
Intersitial P-MV_, ... 1[0-2] 0.011 1[0-1] 0.695
edema UP-MvV_ .. 1[0-2] 0.732* 1[0-2]
UP-MV_,  1[0-2] 0.381*, 0.9407 1 [1-1]
UP-MV,¢ 0 [0-1] 0.007*, 0.1071, 1[0-2]
0.319%
Hemorrhage P-MV_, ... 0 [0-0] 0.110 3 [0-3] 0.445
UP-MvV_ .. 0[0-2] 0 [0-3]
UP-MV,, 0 [0-1] 2 [1-4]
UP-MV,¢ 0 [0-2] 2 [0-6]
Inflammatory P-MV_ .. 1[0-11] 0.041 7 [3-15] 0.005
infiltration UP-MV_ . 1[0-3] 0.216* 3[3-6] 0.024*
UP-MV_,, 1[0-2] 0.038*, 0.864t 8 [3-15] 0.975*, 0.0071
UP-MV,¢ 2 [0-4] 0.809*, 0.7191, 8[3-12] 0.998%, 0.0407,
0.265% 0.930%
Epithelial P-MV_ .. 2 [1-4] 0.151 1[1-4] 0.048
destruction UP-MV_ . 1[0-2] 1[0-2] 0.131*
UP-MV_,, 1[0-4] 2 [1-4] 0.749%, 0.6331
UP-MV,¢ 1[0-4] 4 [1-4] 0.973%, 0.0487,
0.483%
Microatelectasis P-MV_ .. 2 [0-4] 0.003 4 [1-4] 0.083
UP-MV . 1[1-1] 0.230* 1[1-2]
UP-MV_,, 1[0-1] 0.001*, 0.230t 2 [1-4]
UP-MV, ¢ 1[0-2] 0.097*, 0.974+, 2 [1-4]
0.450%
Overdistension P-MV_ .. 3 [1-3] 0.010 3 [1-6] 0.686
UP-MV_ ..  3[2-9] 0.089* 3[1-4]
UP-MV_,, 3[0-3] t 0.888*, 0.013t 3 [1-6]
UP-MV,¢ 4 [3-4] 0.414*, 0.8437, 3 [2-4]

0.113%

Diffuse alveolar damage in ventral lung regions (ventral) and dorsal lung regions (dorsal). Values are shown as median and interquartile range, and were
obtained from 28 animals in total (n = 7 per group). There were no missing values. Statistical significance was accepted at P < 0.05. Differences among
groups were tested with mixed linear model statistics (results are shown in column “Group effect.”), and Tukey Kramer’s procedure used for post hoc test.
Results are shown in column “post hoc effect” and indicated as: *P < 0.05 against P-MV__ ., TP < 0.05 against UP-MV__ ., and 3P < 0.05 against UP-MVSpon.

P-MV_ .. = protective controlled mechanical ventilation according to the Acute Respiratory Distress Syndrome network; UP-MV_ . = controlled
ultraprotective mechanical ventilation; UP-MV_4 = continuous positive airway pressure combined with pressure supported spontaneous breathing;

UP—MVSpon = ultraprotective mechanical ventilation with mandatory cycles and superposed unassisted spontaneous breathing.

breaths may have led to different patterns of distribution
of regional stress in lungs. Also, the impact of spontane-

increase in markers of inflammation in lung tissue, mainly
in dorsal areas. Since I:E was decreased during UP-MV ¢

than UP—MVSPOM, it is possible that UP-MV/, favored the
collapse/reopening of most lung units. This finding dif-
fers from previous studies from our group showing that
pressure support reduces lung inflammation compared
to controlled MV.31¥2 This difference could be explained
by higher severity of lung injury in the current study as
compared to previous ones. In fact, spontancous breathing
has been reported to increase lung injury in an experimen-
tal model of severe, but not mild ARDS.” However, we
cannot exclude that higher PEEP during UP-MV,,¢ con-
tributed to increase inflammation in our animals. Further-
more, differences in time-cycled versus low-cycled assisted
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ous breathing on lung injury may differ between protec-
tive and ultraprotective strategies. It is worth noting that
spontancous breathing during UP-MV  was not associ-
ated with injurious values of P ., which were decreased
than during P-MV_ . It must be kept in mind, however,
that P; derived from P and P does not allow distin-
guishing the distribution of stress within the lungs on a
regional level, where local phenomena, such as pendelluft,
which can be caused by spontaneous efforts, may contrib-
ute to lung injury.? During UP-MV,, the relatively low
RR and pressure—time product suggests animals were not
uncomfortable.

Guldner et al.
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Fig. 4. Markers of inflammation in lung tlssue. (A) Values are
shown as median and interquartile range with whiskers indicat-
ing minimum and maximum, and were obtained from 28 animals
in total (n = 7 per group). There were no missing values. Statis-
tical significance was accepted at P < 0.05. Differences among
groups were tested with Kruskal-Wallis test, followed by Mann-
Whitney U test with Bonferroni-Holm adjustment for pairwise
comparison. *Versus P-MV_ .. #versus UP-MV . tversus
UP- MVS o+ P values in the figure represent group effect. Post
hoc anaIyS|s (A) ventral: P-MV_ = versus UP-MV__ P =0.902,
versus UP-MV_ P = 0.710, versus UP-MV_ 4 P = 0.026;
UP Mvcontr

= versus UP-MV P = 0.383, versus UP-MV¢
P = 0.001 and UP-MV

spon S_onversus UP-MV,4 P = 0.002;
(A), dorsal: P-MV_ . = versus UP-MV_ P = 0.018, versus
UP-MV___ P = 0.038, versus UP-MV,4 P < 0.001; UP-MV__, =
versus UP- MVS on P = 0.901, versus UP MV, P = 0.001 and
UP- MVS on = versus UP-MV ¢ P = 0.011; (B), ventral: P-MV_ .. =
versus UP- MV . P = 0259, versus UP-MV_ P = 0.620,
versus UP-MV,4 P = 0.053; UP-MV__ = versus UP- MVSpon
P = 0.805, versus UP-MV,¢ P = 0.007 and UP- MVSpon = versus
UP-MV,, P = 0.053; (B), dorsal: P-MV,

oy = Versus UP-MV
P = 0.097, versus UP-MV__

contr

pon P =1 OOO, versus UP-MV¢

P =0.002; UP-MV, . = versus UP-MV_ P = 0.165, versus
UP-MV,¢ P <0.001 and UP-MV___ = versus UP-MVPS P =0.002.
Dorsal = dorsal lung regions; IL—8 = interleukin 8 (B), and in ven-
tral and, P-MV_ . = controlled mechanical ventilation according
to the Acute Respiratory Distress Syndrome network; TNF-a. =
tumor necrosis factor-a. (A); UP-MV__,. = controlled ultraprotec-
tive mechanical ventilation; UP-MV,,¢ = continuous positive airway
pressure combined with pressure supported spontaneous breath-
ing; UP-MVSpon = ultraprotective mechanical ventilation with man-

datory cycles and superposed unassisted spontaneous breathing.
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Possible Clinical Implications

Our results support the hypothesis that UP-MV  and
ECCO,-R without spontaneous breathing may improve
lung protection in the early phase of severe ARDS, as com-
pared to conventional P-MV. This hypothesis is in line with
a prospective cohort study showing that V.. less than 6 ml/
kg predicted body weight and extracorporeal decarboxylation
improved markers of lung protection.’ Furthermore, a recent
randomized controlled trial suggested that the use of UP-MV
combined with ECCO,-R has the potential to further reduce
ventilator-associated lung injury in severe ARDS.® It is worth
noting that, despite potential beneficial effects on oxygen-
ation, a relative worsening of lung damage or inflammation
occurred with spontaneous breathing. These results suggest
that spontaneous breathing should be used cautiously during
UP-MV in the early phase of severe ARDS, even when the
patient shows low RR and inspiratory effort.

Limitations

The current study has several limitations. First, the dou-
ble-hit model does not reproduce all features of the more
complex human severe ARDS. Second, the therapy period
was limited to 6h, and we cannot exclude that results
can differ in the long term. Theoretically, complications
other than VILI could arise from atelectasis mainly with
UP-MV_ ., for example hypoxemia, right heart failure
due to an increase in mean pulmonary arterial pressure,
pneumonia, and difficult weaning, among others. Third,
we used an Fio, of 1.0 in all groups. Although compara-
bility among ventilation modes was enhanced, the higher
Fio, level during a relatively long time period may have led
to reabsorption atelectasis, possibly increasing collapse and
reopening of mid-dorsal and dorsal lung zones. Fourth, the
spontaneous breathing during UP-MV was resumed with
time-cycled and flow-cycled modes, and our results cannot
be directly extrapolated to other assisted ventilation modes.
Fifth, our data were obtained in the early phase of severe
ARDS. Thus, different findings are possible when sponta-
neous breathing is applied later in the course of ARDS.
In fact, spontancous breathing during extracorporeal lung
support has been successfully used in the late phase of
severe ARDS?* and other forms of lung disease.>® Sixth,
to avoid derecruitment and maintain comparability among
groups, PEEP was kept constant during the therapy period
in all groups, contributing to values of P, greater than
30cm H,O in some animals.

Conclusion

In the current model of severe ARDS in pigs, UP-MV with
ECCO,-R and without spontaneous breathing slightly
reduced histologic lung damage, but not inflammation, as
compared to P-MV with low V.. During UP-MV, spon-
taneous breathing improved gas exchange and distribu-
tion of ventilation, but pressure support increased lung
inflammation.

Gildner et al.
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Table 4. Gene Expression of Proinflammatory Mediators and Cell Stress Markers Stress in Lung Tissue
Group Effect,
Gene Region P-MV__ ... UP-MV__ .. UP—MVspDn UP-MV,¢ P Value
TNF-a Ventral 2.5[1.6-4.0] 2.1[1.0-6.9] 4.3 [2.0-7.3] 1.8 [1.3-4.1] 0.5408
Dorsal 3.8 [1.8-8.0] 2.8[1.3-3.8] 4.3 [2.7-30.8] 1.3 [1.1-5.5] 0.1243
IL-6 Ventral 1.6 [1.1-2.6] 1.2[0.5-1.4] 1.3[0.9-2.5] 1.2[0.8-2.7] 0.5274
Dorsal 0.8 [0.5-2.2] 0.8[0.7-1.0] 1.2 [0.4-3.4] 1.5[0.6-3.9] 0.8383
IL-8 Ventral 0.0 [0.0-0.2] 0.0 [0.0-0.1] 0.1 [0.0-0.1] 0.4 [0.0-0.7] 0.1141
Dorsal 0.0 [0.0-0.1] 0.0 [0.0-0.1] 0.1 [0.0-0.1] 0.1 [0.1-0.7] 0.0348*
Tenascin-c Ventral 8.4 [4.3-16.3] 9.7 [3.6-14.8] 5.7 [2.5-12.4] 8.4 [2.4-13.6] 0.9620
Dorsal 5.7 [4.9-7.9] 6.4 [4.2-12.7] 6.5 [2.8-11.0] 5.6 [3.0-10.1] 0.8655
Amphiregulin Ventral 7.1 [5.4-15.4] 4.7 [1.8-8.1] 10.7 [5.5-66.5] 4.07 [2.8-33.1] 0.2433
Dorsal 7.7 [4.6-39.3] 7.3 [3.6-16.8] 15.0 [6.4-125.8] 2.5[1.9-6.5] 0.0653

Values represent x-fold expression of the respective gene normalized to housekeeping genes cyclophilin A and 82-microglobulin. Values are shown as
median and interquartile range, and were obtained from 28 animals in total (n = 7 per group). There were no missing values. Statistical significance was
accepted at P < 0.05. Differences among groups were tested with Kruskal-Wallis test (results are shown in column “Group effect.”) followed by Mann—
Whitney U test and Bonferroni-Holm adjustment for pairwise comparison. *post hoc analysis: P-MV__ = versus UP-MV__ . P = 0.797, versus UP-MV___
P =0.901, versus UP-MVy¢ P = 0.026; UP-MV_ . = versus UP-MV_ P = 0.443, versus UP-MV,g P = 0.030 and UP-MV = versus UP-MV,g P = 0.01 1

Dorsal = dorsal lung regions; IL-6 = interleukin 6; IL-8 = interleukin 8; P-MV__ .= protective controlled mechanical ventilation according to the Acute Res-
piratory Distress Syndrome network; TNF-a = tumor necrosis factor a; UP-MV__ . = controlled ultraprotective mechanical ventilation; UP-MV ¢ = continu-
ous positive airway pressure combined with pressure supported spontaneous breathlng, UP- MV = ultraprotective mechanical ventilation with mandatory

cycles and superposed unassisted spontaneous breathing; ventral = ventral lung regions.

Table 5. Markers of Inflammation in Bronchoalveolar Lavage Fluid

Group Effect,

Protein P-MV__ UP-MV_ UP-MV__ UP-MVg P Value
Total protein (ug/pl) 1.9 [1.4-2.1] 1.2[0.9-1.9] 1.7 [1.0-2.5] 1.2[0.8-1.7] 0.6265
TNF-a (pg/mg total protein)  13.0 [12.9-26.4] 14.4 [6.6-58.6] 17.4 [9.0-108.4] 46.6 [21.9-56.7] 0.4398
IL-6 (pg/mg total protein)  519.8 [230.1-661.7] 322.6 [175.1-890.0]  543.9 [148.9-578.8] 916.3 [294.0-1621.0]  0.6687
IL-8 (pg/mg total protein)  60.5[9.5-121.4]  380.5 [53.5-11154.0] 1657.0 [44.1-5131.0] 2402.0 [117.4-4502.0]  0.2189
MPO 1.3 [0.6-2.0] 1.6 [0.6-2.2] 1.4 [0.7-1.6] 0.9 [0.5-1.3] 0.5787

Values are shown as median and interquartile range, and were obtained from 28 animals in total (n = 7 per group). There were no missing values. However, a
variable number of measurements yielded values less than the detection limit of the respective ELISA kit and were excluded from the analysis. The remain-
ing number of values were: for TNF-a. = P-MV__ 3, UP-MV__ 6, UP-MV___ 4 and UP-MV_¢ 5 animals and for IL-8 = P-MV___ 4, UP-MV___ 4, UP-MV pon
4 and UP-MV,¢ 7 animals. Statistical significance was accepted at P < 0 05 Differences among groups were tested with Kruskal—WaIIls test (Results are
shown in column “Group effect.”) followed by Mann-Whitney U test and Bonferroni-Holm adjustment for pairwise comparison.

IL-6 = interleukin 6; IL-8 = interleukin 8; MPO = activity of myeloperoxidase; P-MV__ .= protective controlled mechanical ventilation according to the Acute
Respiratory Distress Syndrome network; TNF-a = tumor necrosis factor a; UP-MV__ . = controlled uItraprotective mechanical ventilation; UP-MV,¢ = con-
tinuous positive airway pressure combined with pressure supported spontaneous breathmg UP- MV = ultraprotective mechanical ventilation with man-
datory cycles and superposed unassisted spontaneous breathing.
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McGill's Gaseous Ambiguity? “Certainly Not!”

“Er — will you have gas, Sir?”

“Gas? Certainly not! I can afford

electric light !’

Mailed in 1920, this postcard featured the humorous artistry of British cartoonist Donald McGill (1875-1962).
Perhaps aptly named “Mr. Wrench,” McGill’s slim dentist (left) in this pictorial enquires whether his portly patient
wants [laughing] gas. The latter indignantly countered (right) with “Gas? Certainly not! | can afford electric light!”
As he often did, McGill fully exploited the ambiguity of the word “gas” for both illuminating (“natural gas”) and
anesthetic (“laughing gas”) purposes. This postcard is part of the Wood Library-Museum’s Ben Z. Swanson
Collection. (Copyright © the American Society of Anesthesiologists, Inc.)

George S. Bause, M.D., M.PH., Honorary Curator, ASA’s Wood Library-Museum of Anesthesiology, Schaumburg,
Minois, and Clinical Associate Professor, Case Western Reserve University, Cleveland, Ohio. UJYC@aol.com.

esthesiology 2015; 122:631-46

Downloaded From: http://anesthesiology.pubs.asahg.or g/ on 06/23/2016

646

Guldner et al.



